

TABLE OF CONTENTS

 ii | Page

1.0. INTRODUCTION

1.1. EXECUTIVE SUMMARY

This report has been prepared as a part of the structural engineering analysis and design of the **Kavre District** as a partial requirement of application for permit to construct building. This Report describes in brief the Structural Aspects and Design Report of the proposed building. The analysis and design have been carried out using finite element software **ETABS 2021.0.0**. This software provides the Structural Engineer with all the tools necessary to create, modify, analyze, design, and optimize the structural elements in a building model. The structure design is intended to be based primarily on the current National Building Code of Practice of India taking account of relevant British Codes for the provisions not covered in this and is generally in conformance with NBC of Nepal.

1.2. STRUCTURAL MODELLING

ETABS Software, produced by CSI, has made structural analysis of this building California Berkeley and the Foundation System has been made by the SAFE Software, produced by CSI California Berkeley. 3-Dimensional models have been prepared for each part with the dimension shown in the drawings. Concrete grade M20 has been used for Column, Footing, Beam and Slab. Centre-line dimensions are followed for analysis and design. Preliminary sizes of structural components are assumed by experience. For analysis purpose, the beams are assumed to be rectangular so as to distribute slightly larger moment in columns and also to consider the reversibility of seismic load. Seismic loads will be considered acting in the horizontal direction (along either of the two principal directions) and not along the vertical direction, since it is not considered to be significant. The design seismic force has been applied and automatically distributed by the software at various floor level Analysis of the structure were adhered to Indian Standard

456:2000. Specifically, Static and Dynamic Linear Analysis Method (Response Spectrum) was performed to understand the lateral load response of the building with use of ETABS 2021.0.0. The design loads considered as per the relevant codes of practice comprise dead load due to permanent structures, live load due to occupancy of the structure and seismic load due to anticipated earthquake possible at the proposed location. A number of load combinations are considered to obtain the maximum values of design stresses.

1.3. STRUCTURAL SYSTEM OF THE BUILDING

The structural system chosen is **Building with SMRFs**. Columns and beams have been laid out in plan in coordination with architectural and services planning that acts jointly support and transmit to the ground those forces arising from earthquake motions, gravity and live load. Its role becomes increasingly important with the increase in building height. Thus, the vital criteria for structural systems are an adequate reserve of strength against failure, adequate lateral stiffness, and an efficient performance during the service life of the building. The determination of the structural forms of a building involves the selection and arrangement of the major structural elements to resist most efficiently the various combinations of gravity and horizontal loadings. The choice of structural form is strongly influenced by the internal planning, the material and method of construction, the external architectural treatment, the location and routing of service systems, the nature and magnitude of the horizontal loading, and the height and proportion of the building.

2.0. GENERAL DATA FOR STRUCTURAL ANALYSIS

Grade of Concrete and Cover to the Reinforcement is provided according to the provisions of the Indian Code. The appropriate grade of concrete and nominal cover to reinforcement is governed by the following main considerations:

- i. Durability of Concrete include Fire resistance rating
- ii. Corrosion Protection of the Reinforcement
- iii. Bar Size
- iv. Nominal maximum aggregate size

2.1. GRADE OF CONCRETE

The Indian Code IS: 456-2000, permits a minimum grade of concrete for reinforced concrete members as M20 and the following concrete grades shall be used for "normal" conditions, But, the Grade of Concrete considered for this Building is given below:

Foundation: M20 Column: M20 Beam: M20 Secondary Beam: M20 Slab: M20 Plinth Beam: M20

Table 1 Concrete Material Properties

2.2. REINFORCEMENT STEEL

All reinforcing steel to be used in the structural elements shall have a yield stress of 500 MPa, (Thermo-Mechanically Treated bars), conforming to IS: 1786-1985.

Table 2 Reinforcement Properties

2.3. CLEAR COVER

Clear cover to the main reinforcement in the various structural elements shall be as follows:

- a. Footings (Bottom): 50 mm
- b. Footings (Top and Sides): 50 mm
- c. Secondary Beam: 25 mm
- d. Columns: 40 mm
- e. Beams: 25 mm or bar diameter whichever is greater
- f. Slabs: 20 mm or bar diameter whichever is greater

2.4. REFERENCE CODES

Many international standard codes of practices were adopted for the creation of mathematical model, its analysis and design. As per the requirement, National Building Code was used for the load combination in order to check for the worse case during analysis.

Some of the codes used are enlisted below:

A. Loading

B. Design of Earthquake Resistance

C. Design of Concrete Elements

D. Design of Foundations

E. Detailing of Structures

2.5. GENERAL BUILDING LAYOUT:

The proposed building consists of G + 1 Story. The Architectural Plan is as shown:

Figure 3 General Layout of the Proposed Building (Ground Floor Plan)

Figure 4 General Layout of the Proposed Building (First Floor Plan)

Figure 5 General Layout Plan of the Proposed Building (Roof Floor Plan)

Figure 6 Elevation of the proposed Building

2.6. LOAD CALCULATIONS

2.6.1. Gravity Loads

Gravity loading is primarily due to the self-weight of the structure, superimposed dead load and occupancy of the building. Following loads have been considered for the analysis and design of the building based on the relevant Indian Standards.

2.6.2. Live Loads

The Live Load for building has been adopted as given **IS 875 - Part II** Section I Loads for Institutional buildings.

The following value has been adopted:

2.6.3. Dead Load

The following densities of materials have been assumed:

Wall Load Calculation

2.6.4. Seismic Load

2.6.4.1. Seismic Coefficient Method

The basic seismic input shall be determined from NBC 105:2020 based earthquake is used as Design Basis Earthquake in code-based design.

Inertial loads due to earthquake will be applied at the mass centres of each level. These forces would be either calculated manually or auto generated by using the Auto Seismic Loads function of the software ETABS version 2021.0.0 and used for analysis. For all structures, the seismic base will be considered at foundation level.

The Lateral loads for the all building would be resisted by special moment resisting frames.

Equivalent Seismic coefficient method shall be used depending on the building height and geometric configuration as specified in clause 3.2.1 of NBC 105:2020. Appropriate actions would be taken as recommended by NBC code for Structural irregularities. Appropriate percentage of imposed load will be considered in seismic weight calculations as per clause 5.2 of NBC 105:2020.

2.6.4.1.1. Seismic Zoning Factor (Z)

The country is subdivided into different seismic zones based on local seismic hazard. The seismic hazard within zone is assumed to be constant. The value of Z can be obtained from the **table 4-5 (NBC105:2020)** for selected Municipalities.

2.6.4.1.2. Importance classes and Importance Factor (I)

Structure are categorised into three classes depending on the consequences of their loss of function. The importance classes are characterized by an importance factor I which is given in **Table 4-6 (NBC105:2020)**

2.6.4.1.3. The Ductility factor

The ductility factor (R_u) shall be chosen to be consistent with the structural system and the structural member connection detailing. The value of R_u for various type of structures are taken from Table **5-2 (NBC105:2020, Cl- 5.3.1)**

2.6.4.1.4. Over strength Factor

The over-strength factor Ω for Ultimate limit state is adopted from Table 5-2 for appropriate structural system. Similarly, the over –strength factor Ω for Serviceability Limit State is also taken from Table 5-2 NBC105:2020(Cl-5.4.1, 5.4.2) Table 3 Seismic Loading Parameter

2.6.4.2. Base Shear Calculation using NBC 105:2020

2.6.4.2.1. Ultimate limit state (ULS)

2.6.4.2.2. Serviceability limit state

Figure 7 Static Loading Condition (Ultimate Limit state)

Figure 8 Static Loading Condition (Serviceability Limit state)

2.6.4.3. Dynamic Analysis:

Linear dynamic analysis was performed to obtain the design later force i.e. design seismic base shear and its distribution to different levels along the height of the building, and to various lateral load resisting elements by response spectrum method with use of design acceleration spectrum specified. The spectral shape factor for relevant soil type is obtain from the Figure- 4-2. And equation given in Cl-4.1(2).

Figure 9 Spectral Shape Factor, $C_h(T)$ for Model Response Spectrum Method

2.6.5. Wind Loads

Wind load has only applied on roof truss member which is calculated as follow:

Wind Loads act on the Roof of the structure.

Calculation of Wind Load is as follows: We have, $Span = 4.8$ m Pitch = $Rise/Span = 1.5/4.8 = 0.3125$ Height $= 7.7$ m Building is situated in Nepal.

We have, Design wind force on roof $(F) = (Cpe-Cpi)*Pd*A$ And, Design wind Pressure $(F/A) = (Cpe-Cpi)*Pd$ where, Cpe = External Pressure Coefficient

Cpi = Internal Pressure Coefficient $= 0.6$ (Vz)² N/m²

where,

 $Vz =$ Design wind velocity in m/sec = K_1 ^{*} K_2 ^{*} K_3 ^{*} Vb From Table B-10 of Appendix B (IS 875-Part III) $Vb = 47$ m/sec (For Nepal), and K_1 = Risk coefficient K_2 = Terrain, height and structure size factor K_3 = Topography factor (i) Taking the probable life of the structure as 100 years and for $Vb = 47$ m/sec, we have $K_1 = 1.07$ (Clause 5.3.1, IS 875-Part III) (ii) Since, the surrounding has well scattered obstructions having height generally between 1.5 m to 10 m; it belongs to Category 2 structure. The maximum dimension of the building is 13.716 m, it belongs to Class B. From Table 2, $K_2 = 0.98$ (Clause 5.3.2, IS 875-Part III) (iii) Since the terrain is considerably flat, We have, $K_3 = 1$ (Clause 5.3.3, IS 875-Part III) Hence, K_1 ^{*} K_2 ^{*} K_3 = 1.07^{*}0.98^{*}1 = 1.0486 \therefore Vz = 1.0486*47 m/s = 49.28 m/sec $P = 0.6$ (Vz)² = 1457.11N/m² Roof angle or slope of roof = $\tan^{-1}(Rise/(span/2)) = \tan^{-1}(1.5/2.4) \approx 32^0$ And $h/w = 6/4.8 = 1.25$ Here, we have to find the design wind pressure on the sloping roof for two conditions Condition 1: When wind direction is normal to the ridge $(\theta = 0^0)$ For windward side (EF) (Front side) From Table 5 of IS 875-Part III, For $0.5 \le h/w \le 1.5$ and wind angle $\theta = 0^0$ At, Roof angle $\alpha = 30^0$, Cpe = -0.2 Roof angle $\alpha = 45^{\circ}$, Cpe = 0.2 \therefore Roof angle $\alpha = 32^0$, Cpe = -0.1467 For medium permeability, Wall opening $= 5{\text -}20\%$ of wall area \therefore From IS 875-Part III, Clause 6.2.3.2, Internal pressure coefficient = ± 0.5 \therefore Design wind pressure = (Cpe-Cpi)*Pd = (-0.1467-0.5)* 1457.11= -942.31 N/m² And Design wind pressure = $(Cpe-Cpi)*Pd = (-0.1467+0.5)*1457.11 = -514.79$ N/m² For leeward side (GH) (Back side) From Table 5 of IS 875-Part III,

For $0.5 \le h/w \le 1.5$ and wind angle $\theta = 0^0$

At, Roof angle $\alpha = 30^0$, Cpe = -0.6

Roof angle $\alpha = 45^{\circ}$, Cpe = -0.6

 \therefore Roof angle $\alpha = 32^0$, Cpe = -0.6

For medium permeability,

Wall opening $= 5-20\%$ of wall area \therefore From IS 875-Part III, Clause 6.2.3.2, Internal pressure coefficient = ± 0.5

 \therefore Design wind pressure = (Cpe-Cpi)*Pd = (-0.6-0.5)*1457.11 = -1602.82 N/m² And Design wind pressure = $(Cpe-Cpi)*Pd = (-0.6+0.5)*1457.11 = -145.711 \text{ N/m}^2$

Condition 2: When wind direction is parallel to the ridge $(\theta = 90^0)$ For windward side (EG) (Front side) From Table 5 of IS 875-Part III, For $0.5 < h/w < 1.5$ and wind angle $\theta = 90^0$ At, Roof angle $\alpha = 30^0$, Cpe = -0.8 Roof angle $\alpha = 45^{\circ}$, Cpe = -0.8

 \therefore Roof angle $\alpha = 32^0$, Cpe = -0.8

For medium permeability,

Wall opening $= 5{\text -}20\%$ of wall area \therefore From IS 875-Part III, Clause 6.2.3.2, Internal pressure coefficient = ± 0.5

 \therefore Design wind pressure = (Cpe-Cpi)*Pd = (-0.8-0.5)*1457.11 = -1894.24 N/m² And Design wind pressure = $(Cpe-Cpi)*Pd = (-0.8+0.5)*1457.11 = -437.133$ N/m²

For leeward side (FH) (Back side) From Table 5 of IS 875-Part III, For $0.5 < h/w < 1.5$ and wind angle $\theta = 90^0$ At, Roof angle $\alpha = 30^0$, Cpe = -0.8 Roof angle $\alpha = 45^{\circ}$, Cpe = -0.8 \therefore Roof angle $\alpha = 32^0$, Cpe = -0.8

For medium permeability,

Wall opening $= 5{\text -}20\%$ of wall area \therefore From IS 875-Part III, Clause 6.2.3.2, Internal pressure coefficient = ± 0.5

 \therefore Design wind pressure = (Cpe-Cpi)*Pd = (-0.8-0.5)*1457.11 = -1894.24 N/m² And Design wind pressure = $(Cpe-Cpi)*Pd = (-0.8+0.5)*1457.11 = -437.133$ N/m²

Hence, Design wind pressure for uplift $=$ Maximum value of negative pressure $= -1894.24$ N/mm² And, Design wind pressure for downward $= -145.711$ N/mm²

Here, Maximum spacing of purlin $= 0.680$ m Hence, load to be applied on purlin = $(1894.24 - 437.133) * 0.680$ N/m $= 990.83$ N/m $= 0.99083$ kN/m (uplift).

2.7. Soft Storey

A soft storey can be detected by comparing the stiffness of adjacent storeys.

Soft storeys are present in buildings with open fronts on the ground floor or tall storeys.

Figure 10 Open Ground Storey and Bare Frame

There is no soft storey in the proposed building since no storey level has change in mass and stiffness in considerate amount.

2.8. LOAD COMBINATIONS

When Seismic load effect is combined with other load effects, the following load combination are adopted. (Cl_3.6.1, NBC105:2020)

2.8.1. Static load combination for Limit State Method

The static load condition according to NBC 105:2020 clause 3.6 are given below:

- \bullet 1.2DL+1.5LL
- $OL + $\lambda LL \pm EQX$$
- $OL + $\lambda LL \pm EQV$$

Where,

DL: Dead Load, LL: Live Load EQX: Earthquake Load along X-axis EQY: Earthquake Load along Y-axis $λ = 0.6$ for storage facilities =0.3 for other facilities

Figure 11 Various Static Load Combination

2.8.2. Dynamic Load Combination

The dynamic Load conditions is not considered in this building.

The number of modes to be used in the analysis should be such that the sum total of modal masses of all modes considered is at least 90 Percent of the total seismic mass and missing mass correction beyond 33 Percent.

Percentage of live load (storage type) to be taken for calculating seismic weight =60% for live load intensity and live Load for other purpose is taken as 30%for live load intensity [Table 5.1, NBC 105:2020

The live load on roof need not be considered for calculating the seismic weight of the building.

For the purpose of analysis, seismic forces are applied in the model of the building in ETABS. Hence, the manual calculations of seismic weight, base shear and the seismic forces have not been shown. However, the ETABS output for the Seismic Weight and Base Shear is shown.

3.0. ANALYSIS AND DESIGN PROCEDURE

Space frame analysis using **ETABS 2021.0.0** software has been undertaken to obtain refined results for all load combinations in accordance with Indian Standards

The RCC design shall be based on IS: 456-2000 Code of practice for plain and reinforced concrete, following Limit state philosophy. Structural design for typical members has been done for the combination of loads that produces maximum stress in the structural elements, and in turn requires maximum reinforcing steel provisions.

The design of Columns and Beams is done directly using **ETABS 2021.0.0**design software, foundation is designed by Worksheets. The design of Slab is done by Worksheets in Excel. The size of columns and beams are provided as per requirement.

General Information on Structural Elements of the Building:

4.0. MODELING IN ETABS 2021.0.0

4.1. 3D VIEW OF THE BUILDING

ETABS v21.0.0 Page 22 of 54

ETABS v21.0.0 Page 23 of 54

4.2. LOAD APPLICATION

4.2.1. Floor Finish

Figure 13 Floor Finish Load in the Building

4.2.2. Live load

Figure 14 Live Load (LLn) in the Building

ETABS v21.0.0 Page 24 of 54

4.2.3. Wall Load

Figure 15 Wall Load in the Building

Figure 16 Wind Load in the Building

5.0. DESIGN OUTPUT AND STRUCTURAL CHECKS

5.1. AUTO SESMIC LOAD

5.1.1. Auto seismic load along x-x direction

5.1.1.1. Ultimate Limit State

This calculation presents the automatically generated lateral seismic loads for load pattern EQx(U) using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C $C = 0.1823$

Base Shear, $V = CW$

Calculated Base Shear

5.1.1.2. Serviceability Limit State

This calculation presents the automatically generated lateral seismic loads for load pattern EQx(s) using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C $C = 0.1752$

Base Shear, $V = CW$

Calculated Base Shear

5.1.2. Auto seismic load along Y-Y direction

5.1.2.1. Ultimate Limit State

This calculation presents the automatically generated lateral seismic loads for load pattern EQy(U) using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C $C = 0.1823$

Base Shear, $V = CW$

Calculated Base Shear

5.1.2.2. Serviceability Limit State

This calculation presents the automatically generated lateral seismic loads for load pattern EQy(s) using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C $C = 0.1752$

Base Shear, $V = CW$

Calculated Base Shear

5.2. AXIAL FORCE DIAGRAM

Figure 17 Axial Force Diagram

5.3. SHEAR FORCE DIAGRAM

Figure 18 Shear Force Diagram

5.4. BENDING MOMENT DIAGRAM

Figure 19 Bending Moment Diagram

5.5. MODEL MASS PARTICIPATION RATIO

A sufficient number of modes shall be included in the analysis at least 90% of the total seismic weight in the direction of lateral force.

Figure 20 Model Mass Participation Ratio

90% mode participation in exactly 04 modes Corresponding Time period $(T) = 0.328$ secs Corresponding frequency $(f) = 1/T = 3.049$ Hz **As per NBC 105:2020 Clause 7.3, f<33 Hz, which is OK**

5.6. TORSONAL IRREGULARITY CHECK

Torsion irregularity is considered to exist where the maximum horizontal displacement of any floor in the direction of the lateral force (applied at the center of mass) at one end of the story is more than 1.5 times its minimum horizontal displacement at the far end of the same story in that direction.

Table 4 Torsional Irregularity Check

5.7. MAXIMUM STOREY DISPLACEMENT

5.7.1. Ultimate Limit state

Figure 21 Response Plot showing Maximum Storey Displacement due to EQX(u)

Figure 22Response Plot showing Maximum Storey Displacement due to EQY(u)

Permissible displacement = 0.025 /4 X 6.0 X 1000 = **37.5mm** Actual maximum displacement = **11.47 mm** Permissible displacement > Actual displacement **Hence Safe**

5.7.2. Serviceability Limit State

Figure 23 Response Plot showing Maximum Storey Displacement due to EQX(s)

Figure 24Response Plot showing Maximum Storey Displacement due to EQY(s)

Permissible displacement = 0.006 X 6.0 X 1000 =36 **mm** Actual maximum displacement = **11.027 mm** Permissible displacement > Actual displacement **Hence Safe.**

5.8. MAXIMUM STOREY DRIFT

5.8.1. Ultimate Limit State

Figure 25 Response plot showing maximum storey drift due to EQX (u)

Figure 26Response plot showing maximum storey drift due to EQY (u)

Maximum story drift limit based on NBC 105: 2020 is **0.025/4=0.00625** (Clause 5.6.3) for Ultimate Limit State whereas the maximum story drift of building is **0.002134** Maximum drift ratio = **0.001165** Permissible drift > Actual drift **Hence Safe**

5.8.1. Serviceability Limit State

Figure 27 Response plot showing maximum storey drift due to EQX(s)

Figure 28Response plot showing maximum storey drift due to EQY(s)

Maximum story drift limit based on NBC 105: 2020 is **0.006**(Clause 5.6.3) Serviceability Limit State whereas the maximum story drift of building is **0.002051** Maximum drift ratio = **0.002051** Permissible drift > Actual drift **Hence Safe**

5.9. SECTION VERIFICATION

Figure 29 Section Verification

5.10. SUPPORT REACTION

Figure 30 Support Reaction for DL+LL Combination

6.0. DESIGN OF STRUCTURAL ELEMENTS

6.1. DESIGN OF COLUMN

6.1.1. Etabs Definition

Section of columns & SECTION Details of size 350x350mm

Figure 31 Column section in ETABS

6.1.2. Design summary of column

GRID: C2

ETABS Concrete Frame Design

IS 456:2000 + IS 13920:2016 Column Section Design (Summary)

Axial Force and Biaxial Moment Design For P^u , Mu2 , Mu3

Shear Design for Vu2 , Vu3

Joint Shear Check/Design

(1.4) Beam/Column Capacity Ratio

Additional Moment Reduction Factor k (IS 39.7.1.1)

Additional Moment (IS 39.7.1)

- Ast(required) = 1377 mm²
- Provide 4-20 φ +8-16mm φ bars
- Ast (provided) = 2865.13 mm²
- Here, Ast(provided) >Ast(required) **OK**

For lateral ties (IS 456:2000) Clause 26.5.3.2(c):

- Spacing shall be less than the least of:
	- i. Least lateral dimension = 400 mm
	- ii. $16 \varphi = 16 \times 20 = 320 \text{ mm}$
	- iii. 300 mm
- Provide lateral ties 10φ @100mm c/c at edges and 8φ @150mm c/c at midspan.

All the columns are designed in a similar way. Please Refer Structural Drawings for further details.

6.1.3. Longitudinal reinforcement of column

Figure 32 Typical longitudinal reinforcement of column in grid A and B

Figure 33 Typical longitudinal reinforcement of column in Grid C & D

Figure 34 Typical longitudinal reinforcement of column in Grid E

Figure 35 Typical longitudinal reinforcement of column in Grid 1 & 2

6.2. DESIGN OF BEAM

6.2.1. Etabs Definition

Main Beam :300x400 mm

Figure 36 Beam size in ETABS

6.2.2. Design Summary of Beam

Sample Beam: A1-A3

ETABS Concrete Frame Design

IS 456:2000 + IS 13920:2016 Beam Section Design (Summary)

Beam Element Details

Material Properties

Design Code Parameters

Factored Forces and Moments

Design Moments, Mu3 & M^t

Design Moment and Flexural Reinforcement for Moment, Mu3 & T^u

Torsion Force and Torsion Reinforcement for Torsion, T^u & VU2

All the beams are designed in a similar way. The design results are summarized and tabulated in the adjacent tables.

• Provide lateral ties 8φ (4L) @100mm c/c at both edges and 8φ (4L) @150mm c/c at mid-span.

6.3. DESIGN OF BEAM COLUMN CAPACITY (NBC105:2020 CLAUSE 4.4.4)

At every beam column junction in a frame, the summation of the moment capacities of the column end sections shall be greater than 1.2 times the summation of the beam end moment capacities.

6.4. DESIGN OF SLAB

6.5. DESIGN OF FOOTING

6.5.1. Soil Subgrade Modulus

- a) Concrete Grade = 20 MPa
- b) Rebar Grade = 500 MPa
- c) Footing thickness provided =350MM
- d) Footing Settlement: 25 mm (ISOLATED)
- e) Modulus of Subgrade Reaction:

Based on Bowles, "FOUNDATION ANALYSIS AND DESIGN" Chapter 10.5

Modulus of Subgrade Reaction = Allowable Bearing Capacity

*Factor of Safety/Deflection

$$
= 120*3/(25/1000) = 14400 \text{ kN/m}^3
$$

Footing thickness provided is 350 mm

6.5.2. Analysis output

6.5.2.1. Soil Pressure diagram for DL+LL combination

Figure 37 Soil Pressure for DL+LL Combination

Maximum Soil Pressure obtained is 102.85 KN/m² which is lower than Soil bearing capacity (120 KN/m2). Hence, soil pressure is satisfied for DL+LL load combination.

6.5.2.2. Deflection Check

Figure 38 Deflection Diagram for DL+LL combination

Maximum Deflection obtained is 7.142 mm which is lower than Isolated Foundation Deflection (25 mm). Hence, Deflection is satisfied for DL+LL load combination.

Figure 39Punching Shear Capacity Ratio

Maximum Punching Shear obtained is lower than 1. Hence, Punching Shear is satisfied.

6.5.2.4. Design of Footing Slab:

Figure 40: Reinforcement Intensity in X & direction

Please refer structural Drawing for further details.

6.5.2.5. Reinforcement provided in Foundation

Figure 41 Reinforcement provide in Pad Foundation