

TABLE OF CONTENTS

TABLE OF C	ONTENTS ii
1.0. INTR	ODUCTION1
1.1. EX 1.2. ST 1.3. ST	ECUTIVE SUMMARY1RUCTURAL MODELLING
2.0. GENE	ERAL DATA FOR STRUCTURAL ANALYSIS
2.1. GR 2.2. RE 2.3. CL	ADE OF CONCRETE
2.4. RE	FERENCE CODES
2.5. UL 2.6. LO	AD CALCULATIONS
2.6.1.	Gravity Loads
2.6.2.	Live Loads 10
2.6.3.	Dead Load10
2.6.4.	Seismic Load11
2.6.5.	Wind Loads 15
2.7. Sof 2.8. LO 2.8.1	It Storey
2.8.2	Dynamic Load Combination 20
3.0. ANAI	LYSIS AND DESIGN PROCEDURE
4.0. MOD	ELING IN ETABS 2021.0.0
4.1. 3D 4.2. LO 4.2.1.	VIEW OF THE BUILDING
4.2.2.	Live load
4.2.3.	Wall Load
5.0. DESI	GN OUTPUT AND STRUCTURAL CHECKS 26
5.1. AU 5.1.1.	TO SESMIC LOAD26Auto seismic load along x-x direction26
5.1.2.	Auto seismic load along Y-Y direction
5.2. AX 5.3. SH	IAL FORCE DIAGRAM30EAR FORCE DIAGRAM30

ii| Page

5.4. E	BENDING MOMENT DIAGRAM	
5.5. N	MODEL MASS PARTICIPATION RATIO	
5.6. 7	FORSONAL IRREGULARITY CHECK	
5.7. N	MAXIMUM STOREY DISPLACEMENT	
5.7.1.	Ultimate Limit state	33
5.7.2.	Serviceability Limit State	
5.8. N	MAXIMUM STOREY DRIFT	
5.8.1.	Ultimate Limit State	35
5.8.1.	Serviceability Limit State	
5.9. S	SECTION VERIFICATION	
5.10. 5	SUPPORT REACTION	
6.0. DE	SIGN OF STRUCTURAL ELEMENTS	39
6.1. I	DESIGN OF COLUMN	
6.1.1.	Etabs Definition	39
612	Design summary of column	20
0.1.2.		
6.1.3.	Longitudinal reinforcement of column	
6.2. I	DESIGN OF BEAM	44
6.2.1.	Etabs Definition	44
6.2.2.	Design Summary of Beam	44
6.3. I	DESIGN OF BEAM COLUMN CAPACITY (NBC105:2020 CLAUSE 4.4.4)	47
6.4. I	DESIGN OF SLAB	
6.5. I	DESIGN OF FOOTING	49
6.5.1.	Soil Subgrade Modulus	49
6.5.2.	Analysis output	

1.0. INTRODUCTION

1.1. EXECUTIVE SUMMARY

This report has been prepared as a part of the structural engineering analysis and design of the **Kavre District** as a partial requirement of application for permit to construct building. This Report describes in brief the Structural Aspects and Design Report of the proposed building. The analysis and design have been carried out using finite element software **ETABS 2021.0.0**. This software provides the Structural Engineer with all the tools necessary to create, modify, analyze, design, and optimize the structural elements in a building model. The structure design is intended to be based primarily on the current National Building Code of Practice of India taking account of relevant British Codes for the provisions not covered in this and is generally in conformance with NBC of Nepal.

General Features:	
Project: -	Detailed Project Report of Ganesh Secondary
	School
Location: -	Kavre District
Area: -	111.817 sq. m.
Architectural features:	
Type of Building: -	Institutional Building
Height of Storey: -	3.0m
Total Height of the Building: -	7.710 m from plinth to truss structure ridge
Wall and Partition: -	Brick Masonary Wall
Structural features	
Structural System: -	Special Moment Resisting Frame
Foundation Type: -	Isolated, Combined footing
Columns: -	350x350 mm
Beams: -	Main Beam Rectangular :300mmx400mm
	,250x350mm
Slab: -	Floor Slab of 125mm thick
Geotechnical features	<u>(refer geo-tech report)</u>
Soil Type: -	Medium Soil (Soil type – II)
Seismic Zone: -	Beni (as per NBC 105:2020,)

Allowable bearing capacity: -	120 KN/m2 at depth 1.8 m from GS
Foundation Thickness: -	350 mmm
Materials	
Grade of concrete: -	M20 (slab, beam, Column,)
	M20 (Footing)
Grade of steel: -	Fe-500 (elongation >14.5%)
Unit weight of concrete: -	25 kN/m3
Young's Modulus of Elasticity, Ec	5000 √fck
:-	
Modulus of elasticity for Steel, Es:	200 KN/mm2
-	
Poisson's Ratio: -	0.20 for concrete and 0.3 for rebar
Cover to Reinforcement	
Footings (Bottom, and Top)	50mm
Footing (Sides)	75mm
Columns	40mm
Beams	25mm or bar diameter whichever is greater
Slabs	20mm or bar diameter whichever is greater
Stairs (Waist Slab/Folded)	-15mm
Water Tank walls and Slab	-15mm

1.2. STRUCTURAL MODELLING

ETABS Software, produced by CSI, has made structural analysis of this building California Berkeley and the Foundation System has been made by the SAFE Software, produced by CSI California Berkeley. 3-Dimensional models have been prepared for each part with the dimension shown in the drawings. Concrete grade M20 has been used for Column, Footing, Beam and Slab. Centre-line dimensions are followed for analysis and design. Preliminary sizes of structural components are assumed by experience. For analysis purpose, the beams are assumed to be rectangular so as to distribute slightly larger moment in columns and also to consider the reversibility of seismic load. Seismic loads will be considered acting in the horizontal direction (along either of the two principal directions) and not along the vertical direction, since it is not considered to be significant. The design seismic force has been applied and automatically distributed by the software at various floor level Analysis of the structure were adhered to Indian Standard

456:2000. Specifically, Static and Dynamic Linear Analysis Method (Response Spectrum) was performed to understand the lateral load response of the building with use of ETABS 2021.0.0. The design loads considered as per the relevant codes of practice comprise dead load due to permanent structures, live load due to occupancy of the structure and seismic load due to anticipated earthquake possible at the proposed location. A number of load combinations are considered to obtain the maximum values of design stresses.

1.3. STRUCTURAL SYSTEM OF THE BUILDING

The structural system chosen is **Building with SMRFs**. Columns and beams have been laid out in plan in coordination with architectural and services planning that acts jointly support and transmit to the ground those forces arising from earthquake motions, gravity and live load. Its role becomes increasingly important with the increase in building height. Thus, the vital criteria for structural systems are an adequate reserve of strength against failure, adequate lateral stiffness, and an efficient performance during the service life of the building. The determination of the structural forms of a building involves the selection and arrangement of the major structural elements to resist most efficiently the various combinations of gravity and horizontal loadings. The choice of structural form is strongly influenced by the internal planning, the material and method of construction, the external architectural treatment, the location and routing of service systems, the nature and magnitude of the horizontal loading, and the height and proportion of the building.

2.0. GENERAL DATA FOR STRUCTURAL ANALYSIS

Grade of Concrete and Cover to the Reinforcement is provided according to the provisions of the Indian Code. The appropriate grade of concrete and nominal cover to reinforcement is governed by the following main considerations:

- i. Durability of Concrete include Fire resistance rating
- ii. Corrosion Protection of the Reinforcement
- iii. Bar Size
- iv. Nominal maximum aggregate size

2.1. GRADE OF CONCRETE

The Indian Code IS: 456-2000, permits a minimum grade of concrete for reinforced concrete members as M20 and the following concrete grades shall be used for "normal" conditions, But, the Grade of Concrete considered for this Building is given below:

Foundation: M20 Column: M20 Beam: M20 Secondary Beam: M20 Slab: M20 Plinth Beam: M20

Material Properties	
Grade f _{ck} , [MPa]	20
Youngs Modulus E, [Mpa]	2236000
Co-efficient of thermal expansion	0.0000117 per ⁰ C
Basic shrinkage strain	Refer IS 456:200
Basic Creep Factor	Refer IS 456:200
Poisson's Ratio	0.3
Density	24 KN/m ³ (plain concrete)
	25 KN/m ³ (reinforced concrete)

Table 1 Concrete Material Properties

2.2. <u>REINFORCEMENT STEEL</u>

All reinforcing steel to be used in the structural elements shall have a yield stress of 500 MPa, (Thermo-Mechanically Treated bars), conforming to IS: 1786-1985.

Table 2 Reinforcement Properties

Bar	Elastic Modulus [MPa]	Yield Strength, fy [MPa]
Stirrups and Ties	200,000	500
Longitudinal Bars	200,000	500

2.3. <u>CLEAR COVER</u>

Clear cover to the main reinforcement in the various structural elements shall be as follows:

- a. Footings (Bottom): 50 mm
- b. Footings (Top and Sides): 50 mm
- c. Secondary Beam: 25 mm
- d. Columns: 40 mm
- e. Beams: 25 mm or bar diameter whichever is greater
- f. Slabs: 20 mm or bar diameter whichever is greater

2.4. <u>REFERENCE CODES</u>

Many international standard codes of practices were adopted for the creation of mathematical model, its analysis and design. As per the requirement, National Building Code was used for the load combination in order to check for the worse case during analysis.

Some of the codes used are enlisted below:

A. Loading

Code	Description
IS 875: 1987 Part I	Dead Loads
IS 875: 1987 Part II	Imposed Loads
IS 875: 1987 Part V	Special Loads and Combinations

B. Design of Earthquake Resistance

Code	Description	
NBC 105:2020	Nepal National Building code – Seismic Design of Building in Nepal	
IS 1893:2016	Criteria for earthquake resistant design of structures	
15 4226.2012	Code of practice for earthquake resistant design and construction	
15 4520:2015	of buildings	

C. Design of Concrete Elements

Code	Description
	Code of practice for plain and reinforced concrete (Reaffirmed in
IS 456:2000	2016)
IS 1786-2008	Specification for high strength deformed steel bars and wires for
15 17 00.2000	concrete reinforcement

SP-16	Design aids for reinforced concrete
	Handbook on concrete reinforcement and detailing
SP-34	

D. Design of Foundations

Code	Description	
IS 1004	Indian Standard code of practice for design and construction of	
13 1 904	foundations in soil - General requirements	
	Indian Standard code of practice for design and construction of raft	
IS 2950	foundation (Part - I)	
	Indian Standard code of practice for design and construction of pile	
IS 2911	foundations	
IS 2974	Code of practice for design and construction of machine foundation	

E. Detailing of Structures

Code	Description
NBC 105:2020	Nepal National Building code – Seismic Design of Building in Nepal
IS 13920:2016	Ductile Design and Detailing of Reinforced Concrete structures subjected to lateral forces (Reaffirmed in 2017)

2.5. GENERAL BUILDING LAYOUT:

The proposed building consists of G + 1 Story. The Architectural Plan is as shown:

Figure 3 General Layout of the Proposed Building (Ground Floor Plan)

Figure 4 General Layout of the Proposed Building (First Floor Plan)

Figure 5 General Layout Plan of the Proposed Building (Roof Floor Plan)

Figure 6 Elevation of the proposed Building

2.6. LOAD CALCULATIONS

2.6.1. Gravity Loads

Gravity loading is primarily due to the self-weight of the structure, superimposed dead load and occupancy of the building. Following loads have been considered for the analysis and design of the building based on the relevant Indian Standards.

2.6.2. Live Loads

The Live Load for building has been adopted as given **IS 875 - Part II** Section I Loads for Institutional buildings.

SN	Load Set	Load Pattern	Load
			KN/m^2
1	Balcony, passage	Live	4
2	Classroom	Live	4
3	Stair	Live	4
4	Office Room	Live	3
5	Accessible Roof	Live	1.5
6	Toilet Bathroom	Live	2
7	Inaccessible Roof	Live	0.75

The following value has been adopted:

2.6.3. Dead Load

The following densities of materials have been assumed:

Density of materials assumed:						
Concrete:	25	N/m ³	IS 875: Part I			
Stone Masonry:	22	N/m ³	IS 875: Part I			
Mortar Screed:	0.21	N/m ²	IS 875: Part I			
Floor finishes:	0.5	N/m ²	IS 875: Part I			
¹ / ₂ inch Plaster:	0.225	N/m ²	IS 875: Part I			
Maximum finishing load consideration						
Floor finish	1.2,1.5	N/m ²				

Wall Load Calculation

S.No	Thickness	Height(m	Beam	Opening	Wall Load	Wall load
	(m))	Depth(m)	(%)	(KN/m)	ETABS(KN/m)
1	0.3	3.0	0.4	0	17.16	17.2
2	0.3	3.0	0.4	30	12.2	12.2
3	0.3	1	(Parapet Wall)		6.6	

ETABS v21.0.0

Page 10 of 54

2.6.4. Seismic Load

2.6.4.1. Seismic Coefficient Method

The basic seismic input shall be determined from NBC 105:2020 based earthquake is used as Design Basis Earthquake in code-based design.

Inertial loads due to earthquake will be applied at the mass centres of each level. These forces would be either calculated manually or auto generated by using the Auto Seismic Loads function of the software ETABS version 2021.0.0 and used for analysis. For all structures, the seismic base will be considered at foundation level.

The Lateral loads for the all building would be resisted by special moment resisting frames.

Equivalent Seismic coefficient method shall be used depending on the building height and geometric configuration as specified in clause 3.2.1 of NBC 105:2020. Appropriate actions would be taken as recommended by NBC code for Structural irregularities. Appropriate percentage of imposed load will be considered in seismic weight calculations as per clause 5.2 of NBC 105:2020.

2.6.4.1.1. Seismic Zoning Factor (Z)

The country is subdivided into different seismic zones based on local seismic hazard. The seismic hazard within zone is assumed to be constant. The value of Z can be obtained from the **table 4-5 (NBC105:2020)** for selected Municipalities.

2.6.4.1.2. Importance classes and Importance Factor (I)

Structure are categorised into three classes depending on the consequences of their loss of function. The importance classes are characterized by an importance factor I which is given in **Table 4-6 (NBC105:2020)**

2.6.4.1.3. The Ductility factor

The ductility factor (R_{μ}) shall be chosen to be consistent with the structural system and the structural member connection detailing. The value of R_{μ} for various type of structures are taken from Table **5-2 (NBC105:2020, Cl- 5.3.1)**

2.6.4.1.4. Over strength Factor

The over-strength factor Ω for Ultimate limit state is adopted from Table 5-2 for appropriate structural system. Similarly, the over –strength factor Ω for Serviceability Limit State is also taken from Table 5-2 NBC105:2020(Cl-5.4.1, 5.4.2) Table 3 Seismic Loading Parameter

Parameter	Value
Zone factor, Z	0.35 (Dhulikhel)
Importance factor	1.25
Soil type	В
Ductility factor	4 (SMRF)
Over strength factor	1.5

2.6.4.2. Base Shear Calculation using NBC 105:2020

2.6.4.2.1. Ultimate limit state (ULS)

SCHOOL STRUCTURE					
BASE SHEAR COEFFICIENT CALCULATION	DATA 🔽		CLAUSE 🔽		
Equivalent Static Method for ULS:		NBC	105:2020		
Height of Building (H)	6.00	m			
Location of a Building	Dhulikhel				
Seismic Zoning Factor (Z)	0.35	g			
Type of Building	Schools				
Importance Factor (I)	1.25				
(For Moment Resisting Concrete Frame)					
K	0.085				
Aprox Fundamenral Period of Vibration (T)	0.33	Sec			
Amplification Factor	1.25		Clause 5.1.3		
Amplified Period of Vibration (Ta)	0.41	Sec			
Fundamental Period of Vibration (Ti)	0.41	sec			
Soil Type	С				
Spectral Shape Facter C _h (T)					
For above soil type	С				
Та	0.10				
Tc	1.00				
Alpha (á)	2.50				
К	1.80				
Hence, Spectral Shape Facter C _h (T)	2.50				
Elastic Site Spectra C(T)	1.09		Clause 4.1.1		
Ductility Factor R _µ	4.00		Clause 5.3		
Over strength Factor Ω _u	1.50		Clause 5.4		
Horizantal Base Shear Coefficient C _d (T1)	0.1823		Clause 6.1.1		
Seismic Weight of Structure ,W	1837.47	kN			
Horizontal Seismic Base Shear , V	334.97	kN	Clause 6.2		
Exponent Related to the structural Peroid, K	0.95		Clause 6.3		

2.6.4.2.2. Serviceability limit state

BASE SHEAR COEFFICIENT CALCULATION	DATA 🔽		CLAUSE 🔽
Equivalent Static Method for SLS:		NBC	105:2020
Height of Building (H)	6.00	m	
Location of a Building	Dhulikhel		
Seismic Zoning Factor (Z)	0.35	g	
Type of Building	Schools		
Importance Factor (I)	1.25		
(For Moment Resisting Concrete Frame)			
K	0.085		
Aprox Fundamental Period of Vibration (T)	0.33	sec	
Amplification Factor	1.25		Clause 5.1.3
Amplified Period of Vibration (Ta)	0.41	Sec	
Fundamental Period of Vibration (Ti)	0.41	sec	
Soil Type	C		
Spectral Shape Facter C _h (T)			
For above soil type	С		
Та	0.10		
Тс	1.00		
Alpha (á)	2.50		
К	1.80		
Hence,Spectral Shape Facter C _h (T)	2.50		
Elastic Site Spectra Cs(T)	0.22		Clause 4.1.1
Ductility Factor R _µ	4.00		Clause 5.3
Over strength Factor Ω_u	1.25		Clause 5.4
Horizantal Base Shear Coefficient C _d (T1)	0.1752		Clause 6.1.1
Seismic Weight of Structure ,W	1837.47	kN	
Horizontal Seismic Base Shear, V	321.92	kN	Clause 6.2
Exponent Related to the structural Peroid, K	0.95		Clause 6.3

Figure 7 Static Loading Condition (Ultimate Limit state)

Figure 8 Static Loading Condition (Serviceability Limit state)

2.6.4.3. Dynamic Analysis:

Linear dynamic analysis was performed to obtain the design later force i.e. design seismic base shear and its distribution to different levels along the height of the building, and to various lateral load resisting elements by response spectrum method with use of design acceleration spectrum specified. The spectral shape factor for relevant soil type is obtain from the Figure- 4-2. And equation given in Cl-4.1(2).

Figure 9 Spectral Shape Factor, Ch (T) for Model Response Spectrum Method

2.6.5. Wind Loads

Wind load has only applied on roof truss member which is calculated as follow:

Wind Loads act on the Roof of the structure.

Calculation of Wind Load is as follows: We have, Span = 4.8 m Pitch = Rise/Span = 1.5/4.8= 0.3125 Height = 7.7 m Building is situated in Nepal.

We have, Design wind force on roof (F) = (Cpe-Cpi)*Pd*A And, Design wind Pressure (F/A) = (Cpe-Cpi)*Pd where, Cpe = External Pressure Coefficient

Cpi = Internal Pressure Coefficient = 0.6 (Vz)² N/m²

where,

 $Vz = Design wind velocity in m/sec = K_1 * K_2 * K_3 * Vb$ From Table B-10 of Appendix B (IS 875-Part III) Vb = 47 m/sec (For Nepal), and $K_1 = Risk$ coefficient K_2 = Terrain, height and structure size factor $K_3 =$ Topography factor (i) Taking the probable life of the structure as 100 years and for Vb = 47 m/sec, we have $K_1 = 1.07$ (Clause 5.3.1, IS 875-Part III) (ii) Since, the surrounding has well scattered obstructions having height generally between 1.5 m to 10 m; it belongs to Category 2 structure. The maximum dimension of the building is 13.716 m, it belongs to Class B. From Table 2, $K_2 = 0.98$ (Clause 5.3.2, IS 875-Part III) (iii) Since the terrain is considerably flat, We have, $K_3 = 1$ (Clause 5.3.3, IS 875-Part III) Hence, $K_1 * K_2 * K_3 = 1.07 * 0.98 * 1 = 1.0486$ \therefore Vz = 1.0486*47 m/s = 49.28 m/sec \therefore Pd = 0.6 (Vz)² = 1457.11N/m² Roof angle or slope of roof = $\tan^{-1}(\text{Rise}/(\text{span}/2)) = \tan^{-1}(1.5/2.4) \approx 32^{\circ}$ And h/w = 6/4.8 = 1.25Here, we have to find the design wind pressure on the sloping roof for two conditions <u>Condition 1:</u> When wind direction is normal to the ridge ($\theta = 0^0$) For windward side (EF) (Front side) From Table 5 of IS 875-Part III, For $0.5 \le h/w \le 1.5$ and wind angle $\theta = 0^0$ At, Roof angle $\alpha = 30^{\circ}$, Cpe = -0.2 Roof angle $\alpha = 45^{\circ}$, Cpe = 0.2 \therefore Roof angle $\alpha = 32^{\circ}$, Cpe = -0.1467 For medium permeability, Wall opening = 5-20% of wall area \therefore From IS 875-Part III, Clause 6.2.3.2, Internal pressure coefficient = ± 0.5 : Design wind pressure = $(Cpe-Cpi)*Pd = (-0.1467-0.5)*1457.11 = -942.31 \text{ N/m}^2$ And Design wind pressure = $(Cpe-Cpi)*Pd = (-0.1467+0.5)*1457.11 = -514.79 \text{ N/m}^2$ For leeward side (GH) (Back side) From Table 5 of IS 875-Part III.

For $0.5 \le h/w \le 1.5$ and wind angle $\theta = 0^0$

At, Roof angle $\alpha = 30^{\circ}$, Cpe = -0.6

Roof angle $\alpha = 45^{\circ}$, Cpe = -0.6

 \therefore Roof angle $\alpha = 32^{\circ}$, Cpe = -0.6

For medium permeability,

Wall opening = 5-20% of wall area \therefore From IS 875-Part III, Clause 6.2.3.2, Internal pressure coefficient = ±0.5

:. Design wind pressure = $(Cpe-Cpi)*Pd = (-0.6-0.5)*1457.11 = -1602.82 \text{ N/m}^2$ And Design wind pressure = $(Cpe-Cpi)*Pd = (-0.6+0.5)*1457.11 = -145.711 \text{ N/m}^2$

<u>Condition 2:</u> When wind direction is parallel to the ridge $(\theta = 90^{0})$ For windward side (EG) (Front side) From Table 5 of IS 875-Part III, For $0.5 \le h/w \le 1.5$ and wind angle $\theta = 90^{0}$ At, Roof angle $\alpha = 30^{0}$, Cpe = -0.8 Roof angle $\alpha = 45^{0}$, Cpe = -0.8

 \therefore Roof angle $\alpha = 32^{\circ}$, Cpe = -0.8

For medium permeability,

Wall opening = 5-20% of wall area

:. From IS 875-Part III, Clause 6.2.3.2, Internal pressure coefficient = ± 0.5

:. Design wind pressure = $(Cpe-Cpi)*Pd = (-0.8-0.5)*1457.11 = -1894.24 \text{ N/m}^2$ And Design wind pressure = $(Cpe-Cpi)*Pd = (-0.8+0.5)*1457.11 = -437.133 \text{ N/m}^2$

For leeward side (FH) (Back side) From Table 5 of IS 875-Part III, For $0.5 \le h/w \le 1.5$ and wind angle $\theta = 90^0$ At, Roof angle $\alpha = 30^0$, Cpe = -0.8 Roof angle $\alpha = 45^0$, Cpe = -0.8 \therefore Roof angle $\alpha = 32^0$, Cpe = -0.8

For medium permeability,

Wall opening = 5-20% of wall area \therefore From IS 875-Part III, Clause 6.2.3.2, Internal pressure coefficient = ± 0.5

:. Design wind pressure = $(Cpe-Cpi)*Pd = (-0.8-0.5)*1457.11 = -1894.24 \text{ N/m}^2$ And Design wind pressure = $(Cpe-Cpi)*Pd = (-0.8+0.5)*1457.11 = -437.133 \text{ N/m}^2$

Hence, Design wind pressure for uplift = Maximum value of negative pressure = -1894.24 N/mm^2 And, Design wind pressure for downward = -145.711 N/mm^2

Here, Maximum spacing of purlin = 0.680 mHence, load to be applied on purlin = (1894.24 - 437.133) * 0.680 N/m= 990.83 N/m = 0.99083 kN/m (uplift).

2.7. Soft Storey

A soft storey can be detected by comparing the stiffness of adjacent storeys.

Soft storeys are present in buildings with open fronts on the ground floor or tall storeys.

Figure 10 Open Ground Storey and Bare Frame

There is no soft storey in the proposed building since no storey level has change in mass and stiffness in considerate amount.

2.8. LOAD COMBINATIONS

When Seismic load effect is combined with other load effects, the following load combination are adopted. (Cl_3.6.1, NBC105:2020)

2.8.1. Static load combination for Limit State Method

The static load condition according to NBC 105:2020 clause 3.6 are given below:

- 1.2DL+1.5LL
- $DL + \lambda LL \pm EQx$
- DL + λ LL ± EQy

Where,

DL: Dead Load, LL: Live Load EQX: Earthquake Load along X-axis EQY: Earthquake Load along Y-axis λ = 0.6 for storage facilities =0.3 for other facilities

Figure 11 Various Static Load Combination

2.8.2. Dynamic Load Combination

The dynamic Load conditions is not considered in this building.

The number of modes to be used in the analysis should be such that the sum total of modal masses of all modes considered is at least 90 Percent of the total seismic mass and missing mass correction beyond 33 Percent.

Percentage of live load (storage type) to be taken for calculating seismic weight =60% for live load intensity and live Load for other purpose is taken as 30% for live load intensity [Table 5.1, NBC 105:2020

The live load on roof need not be considered for calculating the seismic weight of the building.

For the purpose of analysis, seismic forces are applied in the model of the building in ETABS. Hence, the manual calculations of seismic weight, base shear and the seismic forces have not been shown. However, the ETABS output for the Seismic Weight and Base Shear is shown.

3.0. ANALYSIS AND DESIGN PROCEDURE

Space frame analysis using **ETABS 2021.0.0** software has been undertaken to obtain refined results for all load combinations in accordance with Indian Standards

The RCC design shall be based on IS: 456-2000 Code of practice for plain and reinforced concrete, following Limit state philosophy. Structural design for typical members has been done for the combination of loads that produces maximum stress in the structural elements, and in turn requires maximum reinforcing steel provisions.

The design of Columns and Beams is done directly using **ETABS 2021.0.0**design software, foundation is designed by Worksheets. The design of Slab is done by Worksheets in Excel. The size of columns and beams are provided as per requirement.

Elements	Description	Grade of Concrete	Remarks
Column	350x350 mm	M20	
Main Beam	300x400 mm	M20	
Plinth Beam	250 mm X 300 mm	M20	
Main Slab	125 mm	M20	
Waist Slab		M20	
Foundation	Isolated and Combined Footing	M20	From Soil test Report, Bearing Capacity of Soil = 120 KN/m2 & Settlement =25 mm.

General Information on Structural Elements of the Building:

4.0. MODELING IN ETABS 2021.0.0

4.1. <u>3D VIEW OF THE BUILDING</u>

ETABS v21.0.0

Page 22 of 54

ETABS v21.0.0

Page 23 of 54

4.2. LOAD APPLICATION

4.2.1. Floor Finish

Figure 13 Floor Finish Load in the Building

4.2.2. <u>Live load</u>

Figure 14 Live Load (LLn) in the Building

ETABS v21.0.0

4.2.3. Wall Load

Figure 15 Wall Load in the Building

Figure 16 Wind Load in the Building

5.0. DESIGN OUTPUT AND STRUCTURAL CHECKS

5.1. AUTO SESMIC LOAD

5.1.1. <u>Auto seismic load along x-x direction</u>

5.1.1.1. <u>Ultimate Limit State</u>

This calculation presents the automatically generated lateral seismic loads for load pattern EQx(U) using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C

Base Shear, V

V = CW

C = 0.1823

Calculated Base Shear

Direction	Period Used (sec)	С	W (kN)	V (kN)
Х	0	0	1837.4771	334.9721
X + Ecc. Y	0	0	1837.4771	334.9721
X - Ecc. Y	0	0	1837.4771	334.9721

Applied Story Forces

Story	Elevation	X-Dir	Y-Dir
	m	kN	kN
truss ridge	7.6	0	0
Truss Level	6.1	0	0
2f	6	61.2258	0
1f	3	273.7463	0
Base	0	0	0

ETABS v21.0.0

5.1.1.2. <u>Serviceability Limit State</u>

This calculation presents the automatically generated lateral seismic loads for load pattern EQx(s) using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C

Base Shear, V

V = CW

C = 0.1752

Calculated Base Shear

Direction	Period Used (sec)	С	W (kN)	V (kN)
Х	0	0	1837.4771	321.926
X + Ecc. Y	0	0	1837.4771	321.926
X - Ecc. Y	0	0	1837.4771	321.926

Applied Story Forces

Story	Elevation	X-Dir	Y-Dir
	m	kN	kN
truss ridge	7.6	0	0
Truss Level	6.1	0	0
2f	6	58.8413	0
1f	3	263.0847	0
Base	0	0	0

5.1.2. Auto seismic load along Y-Y direction

5.1.2.1. <u>Ultimate Limit State</u>

This calculation presents the automatically generated lateral seismic loads for load pattern EQy(U) using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C

Base Shear, V

V = CW

C = 0.1823

Calculated Base Shear

Direction	Period Used (sec)	С	W (kN)	V (kN)
Y	0	0	1837.4771	334.9721
Y + Ecc. X	0	0	1837.4771	334.9721
Y - Ecc. X	0	0	1837.4771	334.9721

Applied Story Forces

Story	Elevation	X-Dir	Y-Dir
	m	kN	kN
truss ridge	7.6	0	0
Truss Level	6.1	0	0
2f	6	0	61.2258
1f	3	0	273.7463
Base	0	0	0

5.1.2.2. <u>Serviceability Limit State</u>

This calculation presents the automatically generated lateral seismic loads for load pattern EQy(s) using the user input coefficients, as calculated by ETABS.

Direction and Eccentricity

Direction = Multiple

Eccentricity Ratio = 10% for all diaphragms

Factors and Coefficients

Equivalent Lateral Forces

Base Shear Coefficient, C

Base Shear, V

V = CW

C = 0.1752

Calculated Base Shear

Direction	Period Used (sec)	С	W (kN)	V (kN)
Y	0	0	1837.4771	321.926
Y + Ecc. X	0	0	1837.4771	321.926
Y - Ecc. X	0	0	1837.4771	321.926

Applied Story Forces

Story Elevation		X-Dir	Y-Dir
	m	kN	kN
truss ridge	7.6	0	0
Truss Level	6.1	0	0
2f	6	0	58.8413
1f	3	0	263.0847
Base	0	0	0

5.2. AXIAL FORCE DIAGRAM

Figure 17 Axial Force Diagram

5.3. SHEAR FORCE DIAGRAM

Figure 18 Shear Force Diagram

5.4. BENDING MOMENT DIAGRAM

Figure 19 Bending Moment Diagram

5.5. MODEL MASS PARTICIPATION RATIO

A sufficient number of modes shall be included in the analysis at least 90% of the total seismic weight in the direction of lateral force.

TABLE: Modal Participating Mass Ratios									
Case	Mode	Period	UX	UY	SumUX	SumUY	SumRX	SumRY	SumRZ
		sec							
Modal	1	0.406	0.7251	0.0002	0.7251	0.0002	0.00001892	0.1949	0.0061
Modal	2	0.398	0.0002	0.9428	0.7253	0.9431	0.0953	0.195	0.0071
Modal	3	0.362	0.0002	0.001	0.7255	0.9441	0.0955	0.2032	0.931
Modal	4	0.328	0.2371	0.00002005	0.9626	0.9441	0.0955	0.2808	0.9411
Modal	5	0.165	0	0.0189	0.9626	0.963	0.3791	0.2808	0.9411
Modal	6	0.161	0.00002241	6.245E-07	0.9626	0.963	0.3791	0.2814	0.9544
Modal	7	0.154	0	0.0152	0.9626	0.9782	0.62	0.2814	0.9544
Modal	8	0.14	0.00001668	0.0218	0.9626	1	0.9816	0.2817	0.9544
Modal	9	0.14	0.0316	0.0000206	0.9943	1	0.9819	0.8786	0.9548
Modal	10	0.139	0.0049	0.00003944	0.9991	1	0.9819	0.9814	0.9564
Modal	11	0.132	0.0005	0.0000128	0.9996	1	0.9821	0.9866	1
Modal	12	0.093	0.0004	0	1	1	0.9821	0.9999	1

Figure 20 Model Mass Participation Ratio

90% mode participation in exactly 04 modes Corresponding Time period (T) = 0.328 secs Corresponding frequency (f) = 1/T = 3.049Hz As per NBC 105:2020 Clause 7.3, f<33 Hz, which is OK

5.6. TORSONAL IRREGULARITY CHECK

Torsion irregularity is considered to exist where the maximum horizontal displacement of any floor in the direction of the lateral force (applied at the center of mass) at one end of the story is more than 1.5 times its minimum horizontal displacement at the far end of the same story in that direction.

TABLE: Story Max Over Avg Displacements								
Story	Output Case	Case Type	Step Type	Step Number	Maximum	Average	Ratio	Check
					mm	mm		<1.5
1f	EQx(U)	LinStatic	Step By Step	1	6.13	6.076	1.009	OK
1f	EQx(U)	LinStatic	Step By Step	2	6.085	6.078	1.001	OK
1f	EQx(U)	LinStatic	Step By Step	3	6.19	6.075	1.019	OK
1f	EQy(U)	LinStatic	Step By Step	1	6.403	6.34	1.01	OK
1f	EQy(U)	LinStatic	Step By Step	2	7.488	6.34	1.181	OK
1f	EQy(U)	LinStatic	Step By Step	3	7.362	6.34	1.161	OK

Table 4 Torsional Irregularity Check

TABLE: Story Max Over Avg Displacements								
Story	Output Case	Case Type	Step Type	Step Number	Maximum	Average	Ratio	Check
					mm	mm		<1.5
1f	EQx(s)	LinStatic	Step By Step	1	5.892	5.84	1.009	OK
1f	EQx(s)	LinStatic	Step By Step	2	5.848	5.841	1.001	OK
1f	EQx(s)	LinStatic	Step By Step	3	5.949	5.839	1.019	OK
1f	EQy(s)	LinStatic	Step By Step	1	6.154	6.093	1.01	OK
1f	EQy(s)	LinStatic	Step By Step	2	7.196	6.093	1.181	OK
1f	EQy(s)	LinStatic	Step By Step	3	7.076	6.093	1.161	OK

5.7. MAXIMUM STOREY DISPLACEMENT

5.7.1. Ultimate Limit state

Figure 21 Response Plot showing Maximum Storey Displacement due to EQX(u)

Figure 22Response Plot showing Maximum Storey Displacement due to EQY(u)

Permissible displacement = 0.025 /4 X 6.0 X 1000 = **37.5mm** Actual maximum displacement = **11.47 mm** Permissible displacement > Actual displacement **Hence Safe**

5.7.2. Serviceability Limit State

Figure 23 Response Plot showing Maximum Storey Displacement due to EQX(s)

Figure 24Response Plot showing Maximum Storey Displacement due to EQY(s)

Permissible displacement = 0.006 X 6.0 X 1000 =36 **mm** Actual maximum displacement = **11.027 mm** Permissible displacement > Actual displacement **Hence Safe**.

5.8. MAXIMUM STOREY DRIFT

5.8.1. Ultimate Limit State

Figure 25 Response plot showing maximum storey drift due to EQX (u)

Figure 26Response plot showing maximum storey drift due to EQY (u)

Maximum story drift limit based on NBC 105: 2020 is **0.025/4=0.00625** (Clause 5.6.3) for Ultimate Limit State whereas the maximum story drift of building is **0.002134** Maximum drift ratio = **0.001165** Permissible drift > Actual drift **Hence Safe**

5.8.1. Serviceability Limit State

Figure 27 Response plot showing maximum storey drift due to EQX(s)

Figure 28Response plot showing maximum storey drift due to EQY(s)

Maximum story drift limit based on NBC 105: 2020 is **0.006**(Clause 5.6.3) Serviceability Limit State whereas the maximum story drift of building is **0.002051** Maximum drift ratio = **0.002051** Permissible drift > Actual drift **Hence Safe**

5.9. SECTION VERIFICATION

Figure 29 Section Verification

5.10. SUPPORT REACTION

Figure 30 Support Reaction for DL+LL Combination

6.0. DESIGN OF STRUCTURAL ELEMENTS

6.1. DESIGN OF COLUMN

6.1.1. Etabs Definition

Section of columns & SECTION Details of size 350x350mm

Frame Properties	General Data	00110001070.050				
	Property Name	COLUMN:350x350				
Filter Properties List Clic	Material	M20	E Frame Section Property Reinforceme	nt Data		>
Filer Properties Lit Ok Type Al Velocity Filter Clear Velocity Properties Properties Velocity Find This Property COLUMN 350-350 COLUMN 350-350 COLUMN 350-350 Statistics Statistics Statistics Statistics Statistics	Notional Size Data Modify/Show Notional Size Display Color Change Notes Modify/Show Notes Shape Section Shape Concrete Recangular V Section Properly Source Source: User Defined Section Dimensions Depth 350 Width 350		Peisign Type PA2433 Design (Column) PA2433 Design (Column) PA2633 Design (Column) Participation Proceeding on the service of the se		HYSD500 V m HYSD500 V m Oreck/Design Oreck/Design Painforcement to be Checked Painforcement to be Designed	
MB-200380 MB-300400 SB-230300 SHS 75/7544 SHS 100X100X4			Longtudinal Bar Size and Area Comer Bar Size and Area	16 20	 201 314 	mm² mm²
			Confinement Bars			
			Confinement Bar Size and Area 1		· · · 79	mm ²
	Show Section Properties		Longitudinal Spacing of Confinement Bans (Along 1-Axis) Number of Confinement Bans in 3-dir Number of Confinement Bans in 2-dir		150 mm 3 3	
	atter	M	3	OK Canc	el	

Figure 31 Column section in ETABS

6.1.2. Design summary of column

GRID: C2

ETABS Concrete Frame Design

IS 456:2000 + IS 13920:2016 Column Section Design (Summary)

Column	Element	Details

Level	Element	Unique Name	Section ID	Combo ID	Station Loc	Length (mm)	LLRF	Туре
1f	C4	4	COLUMN:350x350	DL+0.3LLn+0.6LLn+EQy	0	3000	0.879	Ductile Frame

Section Properties					
b (mm)	h (mm)	dc (mm)	Cover (Torsion) (mm)		
350	350	58	30		

Material Properties						
E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)		
22360.68	20	1	500	500		

Design Code Parameters				
¥с	¥s			
1.5	1.15			

Axial Force and Biaxial Moment Design For P_{u} , M_{u2} , M_{u3}

Design P _u	Design M _{u2}	Design M _{u3}	Minimum M₂	Minimum M ₃	Rebar %	Capacity Ratio
kN	kN-m	kN-m	kN-m	kN-m	%	Unitless
219.5979	80.7571	4.392	4.392	4.392	1.97	0.648

	Axial Force and Biaxial Moment Factors										
K FactorLengthInitial MomentAdditional MomentMinimurUnitlessmmkN-mkN-mkl											
Major Bend(M3)	0.634232	2600	-1.4127	0	4.392						
Minor Bend(M2)	0.655106	2600	32.3029	0	4.392						

Shear Design for Vu2, Vu3	V_{u2}, V_{u3}	for \	Design	Shear
---------------------------	------------------	-------	--------	-------

	Shear V _u kN	Shear V _c kN	Shear V _s kN	Shear V _p kN	Rebar A _{sv} /s mm²/m
Major, V _{u2}	52.6681	84.9392	40.8802	52.6681	387.95
Minor, V _{u3}	54.1074	85.0874	40.8802	25.4669	387.95

Joi	nt Shear	C	heck/Desig	n

	Joint Shear Force kN	Shear V _{Top} kN	Shear V _{u,Tot} kN	Shear V _c kN	Joint Area cm²	Shear Ratio Unitless
Major Shear, Vu2	N/N	N/N	N/N	N/N	N/N	N/N
Minor Shear, Vu3	N/N	N/N	N/N	N/N	N/N	N/N

(1.4) Beam/Column Capacity Ratio

Major Ratio	Minor Ratio
N/N	N/N

Additional Moment Reduction Factor k (IS 39.7.1.1)

A _g	A _{sc}	P _{uz}	P₀	P _u	k
cm²	cm²	kN	kN	kN	Unitless
1225	24.1	2007.45	450.7589	219.5979	1

Additional Moment (IS 39.7.1)

	Consider Ma	Length Factor	Section Depth (mm)	KL/Depth Ratio	KL/Depth Limit	KL/Depth Exceeded	M _a Moment (kN-m)
Major Bending (M ₃)	Yes	0.867	350	4.711	12	No	0
Minor Bending (M ₂)	Yes	0.867	350	4.867	12	No	0

- Ast(required) = 1377 mm²
- Provide 4-20 ϕ +8-16mm ϕ bars
- Ast (provided) = 2865.13mm²
- Here, Ast(provided) >Ast(required) OK

For lateral ties (IS 456:2000) Clause 26.5.3.2(c):

- Spacing shall be less than the least of:
 - i. Least lateral dimension = 400 mm
 - ii. $16 \phi = 16 \times 20 = 320 \text{ mm}$
 - iii. 300 mm

•

 Provide lateral ties 10φ @100mm c/c at edges and 8φ @150mm c/c at midspan.

All the columns are designed in a similar way. Please Refer Structural Drawings for further details.

6.1.3. Longitudinal reinforcement of column

Figure 32 Typical longitudinal reinforcement of column in grid A and B

Figure 33 Typical longitudinal reinforcement of column in Grid C & D

Figure 34 Typical longitudinal reinforcement of column in Grid E

Figure 35 Typical longitudinal reinforcement of column in Grid 1 $\&\,2$

Page 43 of 54

6.2. <u>DESIGN OF BEAM</u>

6.2.1. Etabs Definition

Main Beam :300x400 mm

el II	General Data					
Frame Properties	Property Name	COLUMN:350x350				
Elter Properties List	Material	M20 ~	E Frame Section Property Reinforceme	nt Data		>
Tune 48	Notional Size Data	Modify/Show Notional Size				
ijpe Al	Display Color	Change	Design Type	Rebar Material		
Filter Clear	Notes	Modfy/Show Notes	P-M2-M3 Design (Column)	Longitudinal Bars	HYSD500	·
Properties			O M3 Design Only (Beam)	Confinement Bars (Ties)	HYSD500	×
Find This Property	Shape					
COLUMN:350x350	Section Shape	Concrete Rectangular V	Rectinguistion	Continement bars	Reinformement to be	Chacked
A-CompBm COLUMN-350-350	Section Property Source			O nes	Reinforcement to be	Declared
ISB49.5X49.5X2.9 ISB72X72X3.2	Source: User Defined		Urcuar	O sprain	 Heinforcement to be 	Designed
ISB72X72X4.0			Longtudinal Bars			
ISB915X91.5X3.6	Section Dimensions		Clear Cover for Confinement Bars		40	mm
ISB91.5X91.5X4.5 ISLB600	Depth	350	Number of Longitudinal Bars Along 3	dir Face	4	
ISNB32M ISNB65M	Width	350	Number of Longitudinal Bars Along 2	dr Face	4	
MB:250X350 MB:300X400			Longitudinal Bar Size and Area	16	· 201	mm ²
SB:230X300 SHS 75x75x4			Comer Bar Size and Area	20	v 314	mm²
SHS 100×100×4						
			C			
			Confinement Bars Size and Ame	10		
		Chan Casting Presenting	Commement bar size and Alea	Den (Alena 1 Acc)	· /9	mm
11.7		anow becaun rioperaed	Longtuanal Spacing of Confinement	Bars (Mong 1-Mos)	150	mm
TT -	Include Automatic Rigid Zone	Area Over Column	Number of Confinement Bars in 3-dir		3	
	-		Number of Confinement Bars in 2-dir		3	
	Lawrence					
TT				OK Cano	el	

Figure 36 Beam size in ETABS

6.2.2. Design Summary of Beam

Sample Beam: A1-A3

ETABS Concrete Frame Design

IS 456:2000 + IS 13920:2016 Beam Section Design (Summary)

Beam Element Details

Level	Element	Unique Name	Section ID	Combo ID	Station Loc	Length (mm)	LLRF	Туре
1f	B1	21	MB:300X400	DL+0.3LLn+0.6LLn-EQy	175	4800	1	Ductile Frame

	Section Properties									
b (mm) h (mm) b _f (mm) d _s (mm) d _{ct} (mm) d _{cb} (mm)										
300	400	300	0	42	42					

Material Properties

E _c (MPa)	f _{ck} (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ys} (MPa)
22360.68	20	1	500	500

Design Code Parameters

¥c	¥s
1.5	1.15

Factored Forces and Moments Factored Factored Factored Factored M_{u3} $\mathbf{T}_{\mathbf{u}}$ V_{u2} $\mathbf{P}_{\mathbf{u}}$ kN-m kN-m kΝ kΝ -60.0453 11.1708 66.2331 2.544

Design	Moments,	M_{u3}	&	\mathbf{M}_{t}
--------	----------	----------	---	------------------

Factored	Factored	Positive	Negative
Moment	M _t	Moment	Moment
kN-m	kN-m	kN-m	kN-m
-60.0453	15.3325	0	-75.3778

Design Moment and Flexural Reinforcement for Moment, Mu3 & Tu

	Design -Moment kN-m	Design +Moment kN-m	-Moment Rebar mm²	+Moment Rebar mm²	Minimum Rebar mm²	Required Rebar mm²
Top (+2 Axis)	-75.3778		525	0	525	231
Bottom (-2 Axis)		0	263	0	0	263

Shear Force and Reinforcement for Shear, Vu2 & Tu

Shear V _e	Shear V _c	Shear V _s	Shear V _p	Rebar A _{sv} /s
kN	kN	kN	kN	mm²/m
84.6825	0	146.3063	35.6551	1132.48

Torsion Force and Torsion Reinforcement for Torsion, $T_u\ensuremath{\,\&\,} V_{U2}$

T _u	V _u	Core b₁	Core d₁	Rebar A _{svt} /s
kN-m	kN	mm	mm	mm²/m
11.1708	66.2331	236	336	608.87

		Left	525	mm ²			
	Top Reinf. Bar Area	Middle	231	mm ²			
Act (noquined)		Right	513	mm ²			
Ast (required)		Left	263	mm ²			
	Bottom Reinf. Bar Area	Middle	292	mm ²			
		Right	256	mm ²			
Provide	e Top Bars: $2-16\varphi(TH.) + 2-12\varphi(TH.) + 2-12\varphi(EX.)$						
Provide	Bottom Bars: 2-16φ(TH.)+	· 2-12φ(TH.)					
		Left	854.51	mm ²			
Ast(provided)	Top Reinf. Bar Area	Middle	628.32	mm ²			
		Right	854.51	mm ²			
		Left	628.32	mm ²			
	Bottom Reinf. Bar Area	Middle	628.32	mm ²			
		Right	628.32	mm ²			

All the beams are designed in a similar way. The design results are summarized and tabulated in the adjacent tables.

Provide lateral ties 8φ (4L) @100mm c/c at both edges and 8φ (4L) @150mm c/c at mid-span.

6.3. DESIGN OF BEAM COLUMN CAPACITY (NBC105:2020 CLAUSE 4.4.4)

At every beam column junction in a frame, the summation of the moment capacities of the column end sections shall be greater than 1.2 times the summation of the beam end moment capacities.

BEAM-COLUMN CAPACITY (BCC) RATIO		CALCULATION	UNIT	IS CODE AND NBC105:2020 (REMARKS)
1. Moment Calculation for Column:				
Concrete Grade, Fck	=	20	MPa	
Steel Grade, Fy	=	500	MPa	
Width of Column, b	=	350	mm	
Depth of Column, D	=	350	mm	Consider Greater Dim. Of Column as D
Effective Cover, d'	=	56		Clear Cover+Dia. of Shear Bar+Main Bar/2
For Upper Column:				
Pu	=	42.254	kN	From Etabs
Therefore,			_	
Percentage Reinforcement, pt	=	1.97	%	From Etabs
Area of Steel Provided, Ast	=	2413.25	sq.mm	From Etabs
d'/D	=	0.16		
pt/Fck	=	0.10		
Pu/(Fck.b.D)	=	0.00		
From Sp-16 Chart:		0.14	_	(Fee Dee, Cel. associate Muschaut the used on
Mu/(FCK.D.D.D)	=	0.14		(For Rec. Col., consider will about the weaker
Mu	=	120.05		axis value i.e axis along with less moment of
				inertia (b*D^3/12). For greater D, consider Mu
				along y-axis.)
For Lower Column:		0.00 500		
Pu Theorem	=	219.598	KN	
Therefore,		1.07	~	
Percentage Heinforcement, pt	=	1.97	%	From Etabs
Area or Steel Provided, Ast	=	2413.25	sq.mm	From Etabs
07D	=	0.10		
purck	=	0.10		
From Sp. 16 Chart:	=	0.00		
Mu//Eck b b D)	_	0.14		(For Rec. Col., consider Mu about the weaker
Mu(1 (K.D.D.D)	-	130.05	LIN	avia value i a avia clong with loss memore of
With	=	120.05		axis value i.e axis along with less moment of
				inertia (b [*] D [*] 3/12). For greater D, consider Mu
				along y-axis.)
Total Moment (Sum Mc)	=	240.10	kN-m	Mu(1) + Mu(L)
A Hannah Oslavlatian (an Daama				
2. Moment Calculation for Beam:		00		
Concrete Grade, FCK	=	20	мра	
Midth of Room by	=	200	mm	
Overall Depth of Reason D	-	400	mm	
Effective Cover d'	_	400		Clear Cover+Dia Of Shear Bar+Main Bar/2
Effective Depth d	_	359	mm	Ciear Covert Dia. Or Cirear Dartiniam Dariz
Ast (Top)	-	527	samm	For Honging (Bight Top Area)-Etabs
Ast (Bottom)	_	264	sq.mm	For Sagging (Left Bottom Area)-Etabs
Left Beam (Sagaing Moment - Positive)				
Depth of Neutral Axis, xu	-	53.17	Imm	xu/d = (0.87*Fv*Ast)/(0.36*Fck*h*d)
Sagging Moment at Left M/RL)		38.66	kN-m	(IS456:2000 Annex G CL G 1 1 a)
Right Beam (Honging Moment - Monative)	_			to to the order of the training of the training
Ingin Deall (nogging woment - Negative):		105 14	-	(0.1814 to 5-500)
Limiting Deptr of Neutral Axis, XU(max)	=	103.14		
Moment due to Balanced Section, Mu1	=	102.85	kN-m	$Mu_{lim} = 0.133^{\circ}Fck^{\circ}b^{\circ}d^{\circ}d$ (for Fe500)
Area of Steel due to Balanced Section, Ast	=	816.29	sq.mm	
Area of Compression Steel, Asc	=	0.00	sq.mm	
Moment due to Asc, Mu2	=	0.00	kN-m	<u>Mu-Mu,lim = Fso*Aso*(d-d')</u>
Hogging Moment at Right, M(BR)	=	102.85	kN-m	<u>Mu1 + Mu2</u>
Total Moment (Sum Mb)	=	141.51	kN-m	<u> M(EL) + M(BR)</u>
3. Check for Strong Column-Weak Beam:				
Total Moment (Sum Mc)	=	240.10	kN-m	(Sum of the design moment of resistance of the
				column above and below.)
Total Moment (Sum Mb)	=	141.51	kN-m	(Sum of the design moment of resistance of
				beams)
(Sum Mc/Sum Mb):		14 March 16		
	=	1.70	Okay	
BCC Ratio Check	=	1.70 Okay	Окау	Must be greater than 1.2

6.4. DESIGN OF SLAB

			SLAB I	DESIGN					
	Input	Calculation	Output	Date :	26 October 2024				
	Slab Mark	Label-F6		Floor Finish (w _{stl})	1.50	kN/m ²			
	Overall Depth (D)	125 mm		Live Load (w _s)	3.00	kN/m ²			
	Effective Cover (d')	25 mm		Other Loads (w _{vl})	1.50	kN/m ²			
	Grade of Concrete (f _{ck})	M20 🗸	Storey1	Self Weight (w _{dl})	3.13	kN/m ²			
	Grade of Steel (fy)	Fe 500 🗸		Total Load (w)	9.13	kN/m ²			
	Clear Span in Shorter Direction (l_x)	4.80 m		Factored Total Load (wu)	13.69	kN/m ²			
	Clear Span in Longer Direction (ly)	5.50 m		Edge Support Condition	Two Adjacent Edges Disc	ontinuous 🗸 🔻			
			Reinforcen	nent Details					
Dia	imeter of Bars along Shorter Direction at	Mid-span (φ_{x-mid})	8 mm	Diameter of Bars along Shorter Direction at	Support (ϕ_{x-sup})	8 mm			
Dia	ameter of Bars along Longer Direction at	Mid-span (q _{y-mid})	8 mm	Diameter of Bars along Longer Direction at	$Support\left(\phi_{y\text{-sup}}\right)$	8 mm			
Sp	acing for Bars along Shorter Direction at	Mid-span (s _{x-mid})	100 mm	Spacing for Bars along Shorter Direction at	Support (s_{x-sup})	75 mm			
Prov	vided Spacing for Bars along Shorter Dire	ection at Mid-span	125 mm	Provided Spacing for Bars along Shorter Dir	ection at Support	125 mm			
Sp	acing for Bars along Longer Direction at	Mid-span (s _{y-mid})	100 mm	Spacing for Bars along Longer Direction at	Support (sy-sup)	75 mm			
Pro	vided Spacing for Bars along Longer Dire	ection at Mid-span	125 mm	Provided Spacing for Bars along Longer Dire	ection at Support	125 mm			
			Revision	n Needed					
	Corners Lift-up?		No 🔻	A _{st.torsion}	301.59	mm ²			
	Diameter of Bars in Mesh (@) 8 mm Spacing of Bars in Mesh (s)					125 mm			
	Provide 8 mm φ @ 1	25 mm c/c both	ways at top and	bottom at each corner over an area 960 n	nm × 960 mm				
			Strength	n Criteria					
	$p_{t,lim}$		0.76 %	P _{t,provided}		0.44 %			
		E	esign is Safe fo	r Strength Criteria					
			Deflectio	on Criteria					
					Middle	Support			
				(l/d) _{max}	N/A	N/A			
	Shorter Direc	ction		(1/d)provided	N/A	N/A			
	T D'			(I/d) _{max}	N/A	N/A			
	Longer Direc	tion		(l/d)provided	N/A	N/A			
		De	sign is Safe for	Deflection Criteria					
			Shear	Criteria					
			Design is Safe f	or Shear Criteria					
4.80 m	8 q @ 125 mm 8 q @ 125 mm 8 q @ 125 mm				DR. 89@1 89@1	AW 25 mm 25 mm			
	5.50 m								

6.5. **DESIGN OF FOOTING**

6.5.1. Soil Subgrade Modulus

- a) Concrete Grade = 20 MPa
- b) Rebar Grade = 500 MPa
- c) Footing thickness provided =350MM
- d) Footing Settlement: 25 mm (ISOLATED)
- e) Modulus of Subgrade Reaction:

Based on Bowles, "FOUNDATION ANALYSIS AND DESIGN" Chapter 10.5

Modulus of Subgrade Reaction = Allowable Bearing Capacity

*Factor of Safety/Deflection

$$= 120*3/(25/1000) = 14400 \text{ kN/m}^3$$

Footing thickness provided is 350 mm

6.5.2. <u>Analysis output</u>

6.5.2.1. Soil Pressure diagram for DL+LL combination

Figure 37 Soil Pressure for DL+LL Combination

Maximum Soil Pressure obtained is 102.85 KN/m^2 which is lower than Soil bearing capacity (120 KN/m^2). Hence, soil pressure is satisfied for DL+LL load combination.

6.5.2.2. Deflection Check

Figure 38 Deflection Diagram for DL+LL combination

Maximum Deflection obtained is 7.142 mm which is lower than Isolated Foundation Deflection (25 mm). Hence, Deflection is satisfied for DL+LL load combination.

6.5.2.3. Punching Shear Check

Figure 39Punching Shear Capacity Ratio

Maximum Punching Shear obtained is lower than 1. Hence, Punching Shear is satisfied.

6.5.2.4. Design of Footing Slab:

Figure 40: Reinforcement Intensity in X & direction

Please refer structural Drawing for further details.

6.5.2.5. <u>Reinforcement provided in Foundation</u>

Figure 41 Reinforcement provide in Pad Foundation